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The analysis and modelling of the structure of turbulent flow in a circular pipe
subjected to an axial rotation is presented. Particular attention is paid to determining
the terms in various turbulence closures that generate the two main physical features
that characterize this flow: a rotationally dependent axial mean velocity and a
rotationally dependent mean azimuthal or swirl velocity relative to the rotating
pipe. It is shown that the first feature is well represented by two-dimensional explicit
algebraic stress models but is irreproducible by traditional two-equation models. On
the other hand, three-dimensional frame-dependent models are needed to predict the
presence of a mean swirl velocity. The latter is argued to be a secondary effect which
arises from a cubic nonlinearity in standard algebraic models with conventional near-
wall treatments. Second-order closures are shown to give a more complete description
of this flow and can describe both of these features fairly well. In this regard, quadratic
pressure–strain models perform the best overall when extensive comparisons are made
with the results of physical and numerical experiments. The physical significance of
this problem and the implications for future research in turbulence are discussed in
detail.

1. Introduction
Turbulent flow in pipes has been a popular benchmark case for the testing and

evaluation of both theories and models of turbulence during the past century. One of
the first notable examples was the mixing length theory of Prandtl (1925) which was
partially validated using early turbulent pipe flow data approximately seventy years
ago. Laufer (1954) probably provided the first extensive measurements of the fully
developed turbulence structure in a stationary circular pipe. Then an interest arose
in laminar pipe flow subjected to a spanwise rotation with its associated secondary
flows (Benton 1956). This was of geophysical interest since the Earth’s rotation gives
rise to a spanwise rotation. The turbulent version of this problem later received
considerable attention also (Majumder, Pratap & Spalding 1977; Howard, Patankar
& Bordynuik 1980). This problem is primarily characterized by the development of
a double-vortex secondary flow in planes perpendicular to the axial velocity in the
frame of the rotating pipe. It also has an analogy with flow in a curved pipe (Dennis
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& Ng 1982; Berger, Talbot & Yao 1983). More recently, the problem of turbulent
flow in an axially rotating pipe has come to be of considerable interest. The laminar
counterpart of this problem is not of interest since – relative to the rotating pipe –
the flow is unidirectional with a parabolic velocity profile. Thus, the laminar flow
problem with an axial rotation is identical to its non-rotating counterpart. However,
for fully developed turbulent flow there is a decided difference. Relative to an observer
who is rotating with the pipe, the flow is no longer unidirectional in the mean or
averaged sense. There is a non–zero azimuthal component of the mean velocity that
is present. Thus, there is a secondary flow in the form of a mean swirl velocity. The
continuity equation forces the radial mean velocity to be zero, under fully developed
conditions with azimuthal symmetry, so there is just one other component of the mean
velocity in addition to the axial component. Furthermore, both these components are
rotationally dependent, varying significantly with the rotation rate of the pipe.

The literature contains a number of well-documented experiments which include the
measurements of Murakami & Kikuyama (1980), Kikuyama, Murakama & Nishibori
(1983a), Reich & Beer (1989) and, most recently, those of Imao, Itoh & Harada (1996).
Calculations of this flow, with the use of a variety of turbulence closures, have been
reported by Kikuyama et al. (1983b), Hirai, Takagi & Matsumato (1988) and Malin
& Younis (1997). More recently, direct and large-eddy simulations were conducted
of turbulent flow in an axially rotating pipe, for example by Eggels, Boersma &
Nieuwstadt (1994, see also Eggels & Nieuwstadt 1993) which further illuminated this
flow. In the last year, Orlandi & Fatica (1997) have conducted extensive, well-resolved
direct simulations that are an excellent addition to the published work on this flow.
This problem is of considerable practical importance because of the analogies with
three-dimensional turbulent boundary layers such as those on the swept wings of
aircraft. It is, furthermore, of value in the understanding of swirling flows which have
important applications in combustion as well as in other fields.

In this paper, the analysis and modelling of turbulent flow in an axially rotating
pipe will be presented in detail. The focus will be on the systematic analysis of the
key features of various turbulence models that determine their performance in this
flow. The generators for the principal effects in an axially rotating pipe will be clearly
identified. This flow is rapidly becoming an important benchmark problem for the
verification of turbulence models and hence the present motivation in identifying
the underlying physical processes and examining their consequences for modelling
strategies. It will be shown that traditional two-equation models are fundamentally
incapable of describing this flow as far as its main physical attributes are concerned.
The two most important physical features are a rotationally dependent axial velocity
and the presence of a rotationally dependent azimuthal or swirl velocity in the mean
relative to the rotating pipe. Traditional two-equation models – such as the standard
K–ε model – fail to predict both effects. The first effect (the rotationally dependent
axial mean velocity) will be shown to be well described by two-dimensional explicit
algebraic stress models which only have a quadratic tensorial nonlinearity. While
such models, with conventional near-wall treatments, are incapable of describing
the presence of a mean swirl velocity (the second feature mentioned), it is argued
that this is not an extremely serious drawback in that such a mean swirl velocity
only constitutes an effect that is approximately 15% of the axial mean velocity. It
is decisively shown that to predict the presence of a mean swirl velocity for this
flow problem with standard algebraic models, a cubic nonlinearity is needed as has
been argued previously (Wallin & Johansson 1997, see also Wallin & Johansson
2000). On the other hand, second-order closures can predict both effects with a linear
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Figure 1. Schematic of turbulent flow in an axially rotating circular pipe.

pressure–strain model (which in the three-dimensional equilibrium limit gives rise to
an algebraic model with a quartic nonlinearity through the algebraic stress model
approximation). However, it will be shown – by making extensive comparisons with
the results of physical and numerical experiments – that quadratic pressure–strain
models perform the best overall. In this regard, calculations with the Launder, Reece
& Rodi (1975) and Speziale, Sarkar & Gatski (1991) models will be presented.
Pettersson, Andersson & Brunvoll (1998) recently demonstrated that cubic pressure–
strain models, despite their complexity, do not perform as well in this problem.
Interestingly enough, Younis, Gatski & Speziale (1996) showed that another problem
with swirl – the swirling free jet – is also better described with a quadratic pressure–
strain model.

Particular attention will be paid to tracing the origins of each of the two central
physical features in an axially rotating pipe in order to gain a better physical insight
into this turbulent flow. Furthermore, detailed model calculations will be presented
and it will be demonstrated that the presence of a mean swirl velocity is a near-wall
effect at high Reynolds numbers (at high Reynolds numbers, in the absence of solid
boundaries, the solution is the same as the inviscid case). Owing to the analogies
that are sometimes made between the laminar flow of a non-Newtonian fluid and the
mean turbulent flow of a Newtonian fluid, the laminar non-Newtonian version of this
problem was also considered, along with the associated questions of invariance which
have considerable relevance to this problem. As stated earlier, this flow is of significant
technological relevance and is one that is becoming an important benchmark case.
This provides the motivation for its study from a theoretical standpoint, something
that has not been done before. The current status of modelling, and the prospects for
future research in turbulence will be thoroughly discussed in the sections to follow.

2. Theoretical background
To analyse flow in an axially rotating circular pipe of radius R, we consider the

Navier–Stokes and continuity equations in a steadily rotating frame – about the axial
direction – written in cylindrical coordinates (see the schematic diagram shown in
figure 1). For the three-dimensional velocity field u = ur(r, θ, z, t)er + uθ(r, θ, z, t)eθ +
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uz(r, θ, z, t)ez , they take the form (Batchelor 1967)

∂ur

∂t
+ u · ∇ur − u2

θ

r
= −∂P

∂r
+ ν

(
∇2ur − ur

r2
− 2

r2

∂uθ

∂θ

)
+ 2Ωuθ, (1)

∂uθ

∂t
+ u · ∇uθ +

uruθ

r
= −1

r

∂P

∂θ
+ ν

(
∇2uθ − uθ

r2
+

2

r2

∂ur

∂θ

)
− 2Ωur, (2)

∂uz

∂t
+ u · ∇uz = −∂P

∂z
+ ν∇2uz, (3)

1

r

∂(rur)

∂r
+

1

r

∂uθ

∂θ
+
∂uz

∂z
= 0. (4)

In (1)–(3), P is the modified pressure that contains the centrifugal and gravitational
body force potentials, ν is the kinematic viscosity, and Ω ≡ Ωez is the rotation rate of
the frame which is undergoing an axial rotation with the pipe so that there are Coriolis
effects. These equations are solved subject to the no-slip condition u(R, θ, z, t) = 0 on
the walls of the pipe. As will be seen later, the analysis of this flow is substantially
simplified by the choice of a coordinate system that rotates with the pipe.

In order to obtain the instantaneous turbulent fields, (1)–(4) must be solved nu-
merically since the turbulence is three-dimensional and time-dependent. The laminar
flow version of this problem has a fully developed unidirectional solution in the form
of a parabolic velocity profile (Batchelor 1967)

uz =
G

4ν
(R2 − r2), (5)

where −G is the constant axial pressure gradient that drives the flow. Thus, this
solution is identical to that in a stationary pipe, as mentioned earlier, which is why
the laminar version of this problem is not of interest. The laminar solution (5) has
been found to be stable provided that the Reynolds number is sufficiently small. No
bifurcation or symmetry breaking bifurcation in the solution has been found at low
Reynolds numbers in the laminar regime.

Since we are interested in the turbulence modelling aspects of this problem, we will
consider the Reynolds-averaged form of the Navier–Stokes and continuity equations
which here take the form (Hinze 1975)

ū · ∇ūr − ū2
θ

r
= −∂P

∂r
+ ν

(
∇2ūr − ūr

r2
− 2

r2

∂ūθ

∂θ

)
−∂τrr
∂r
− 1

r

∂τrθ

∂θ
− ∂τrz

∂z
− 1

r
(τrr − τθθ) + 2Ωūθ, (6)

ū · ∇ūθ +
ūrūθ

r
= −1

r

∂P

∂θ
+ ν

(
∇2ūθ − ūθ

r2
+

2

r2

∂ūr

∂θ

)
−∂τrθ
∂r
− 1

r

∂τθθ

∂θ
− ∂τθz

∂z
− 2

r
τrθ − 2Ωūr, (7)

ū · ∇ūz = −∂P
∂z

+ ν∇2ūz − ∂τrz

∂r
− 1

r

∂τθz

∂θ
− ∂τzz

∂z
− 1

r
τrz, (8)

1

r

∂(rūr)

∂r
+

1

r

∂ūθ

∂θ
+
∂ūz

∂z
= 0, (9)
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where an overbar represents a Reynolds-averaged quantity, and τij = u′iu′j is the
Reynolds stress tensor.

While the general problem of a flow in an axially rotating pipe is fully three-
dimensional (in the sense that all three velocity components are finite), we confine
consideration here to the fully developed flow with azimuthal symmetry where the
flow substantially simplifies. Since the geometry and boundary conditions exhibit
azimuthal symmetry, one would expect the mean flow to do the same unless there is
a symmetry-breaking bifurcation, which has not been observed either experimentally
or computationally. Hence, under fully developed conditions we expect there to be
a mean flow solution of the form ū = ū(r). Then the mean continuity equation (9)
reduces to

1

r

d(rūr)

dr
= 0, (10)

which has the solution

ūr =
C1

r
(11)

where C1 is a constant. The no-slip boundary condition ū(R) = 0 – along with the
condition of regularity of the velocity field at r = 0 – yields C1 = 0 and, hence,
ūr = 0. Thus, ū = ūθ(r)eθ + ūz(r)ez and the mean continuity equation (9) is satisfied
identically for a fully developed mean turbulent flow that is azimuthally symmetric.
The Reynolds-averaged Navier–Stokes equations then become, since ūr = 0 and
ū · ∇ = 0,

− ū
2
θ

r
= −∂P

∂r
− dτrr

dr
− 1

r
(τrr − τθθ) + 2Ωūθ, (12)

ν

(
∇2ūθ − ūθ

r2

)
− dτrθ

dr
− 2

r
τrθ = 0, (13)

−∂P
∂z

+ ν∇2ūz − dτrz
dr
− 1

r
τrz = 0, (14)

where the Laplacian simplifies to

∇2 =
1

r

d

dr

(
r

d

dr

)
.

Equation (12) simply sets the radial dependence of the pressure that is needed to
maintain the flow (note that P = P (r, z); ∂P/∂z is a constant). The mean axial and
swirl velocities are obtained from (13) and (14).

From (13) it is clear that a non-zero mean swirl velocity is generated by the shear
component τrθ of the Reynolds stress tensor which is a source term in this equation.
In order to guarantee that this component is non-zero and that the flow is not
unidirectional – as indicated by experiments – a non-zero τrθ Reynolds shear stress
must be generated by the axial mean velocity ūz(r). In more precise terms, a mean swirl
velocity ūθ(r) is generated in a fully-developed axially rotating pipe flow when the axial
mean velocity ūz = ūz(r) gives rise to a non-zero Reynolds shear stress τrθ , independently
of the swirl velocity. This proposition is at variance with the commonly held belief
(e.g. Hirai et al. 1988) that adoption of a gradient-type assumption for the turbulent
transport of tangential momentum is responsible for the failure of the standard K–ε
model to generate a non-zero swirl velocity. Hirai et al. arrived at this conclusion by
setting the viscous term in (13) to zero. This is an inappropriate approximation in a
flow such as this one where the viscous term makes an important contribution in the
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near-wall region. We further propose that the mean swirl velocity – as well as the axial
mean velocity – will be rotationally dependent if both Reynolds shear stress components
τrθ and τrz depend on the rotation rate Ω of the pipe. It is clear from (14) that τrz
serves as a source term for the axial mean velocity. Such a rotational dependence is
expected from the Reynolds stress transport equation although it is often missing in
simpler models such as the standard K–ε model of turbulence.

Initially we had thought that further light could be shed on this flow by examination
of the analogous problem of laminar, non-Newtonian flow in an axially-rotating pipe.
However, it turns out that a simple non-Newtonian analogy does not provide an
adequate description of this flow (see the Appendix). Adoption of a frame-dependent
model would therefore appear to be essential for the main features of this flow to
be correctly predicted. One has frame-dependent models whenever there is not a
clear-cut separation of scales such as in turbulent flows (Speziale 1998b). The primary
reason that the standard K–ε model does not provide a good description of this flow
is that it is frame-indifferent, as will be discussed in the next section.

3. Generators for swirl and a rotationally dependent mean velocity in the
axially rotating pipe

In this section, it will be shown what terms generate a non-zero mean swirl velocity
and a rotationally dependent axial mean velocity in axially rotating turbulent pipe
flow – the two main physical effects in this problem. Use will be made of the results
of the last section where it was shown that a swirl velocity is generated when the
axial mean velocity gives rise to a non-zero Reynolds shear stress τrθ . The axial mean
velocity – along with the mean swirl velocity – will be rotationally dependent if both
τrθ and τrz depend on the rotation rate Ω of the pipe. Both two-equation models and
full second-order closures will be considered.

3.1. Traditional two-equation models

The standard and nonlinear K–ε models will be considered in detail. The standard
K–ε model consists of the eddy viscosity representation for the Reynolds stress tensor
which, in coordinate–free notation, reads

τ = 2
3
KI − 2νTS . (15)

where I is the unit tensor and S is the mean strain rate tensor.
The turbulent kinetic energy K and turbulent dissipation rate ε are obtained from

separate modelled transport equations. These equations take the general form

∂K

∂t
+ ū · ∇K = P− ε+

∂

∂xi

(
νT

σk

∂K

∂xi

)
, (16)

∂ε

∂t
+ ū · ∇ε = Cε1

ε

K
P− Cε2 ε

2

K
+

∂

∂xi

(
νT

σε

∂ε

∂xi

)
, (17)

where P ≡ −τij∂ui/∂xj is the turbulence production and Cε1, Cε2, σk and σε are
constants. The standard K–ε model is frame-indifferent, i.e. it takes the same form
in all frames of reference independently of whether or not they are inertial (Speziale
1998b). We will write the Reynolds stress tensor – as well as other tensors – in matrix
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form making use of cylindrical coordinates. Thus, for example,

τ =

 τrr τrθ τrz
τrθ τθθ τθz
τrz τθz τzz

 . (18)

In cylindrical coordinates, the mean rate-of-strain tensor that the axial mean velocity
gives rise to takes the form

S =

 0 0 1
2
dūz/dr

0 0 0
1
2
dūz/dr 0 0

 . (19)

It is clear, therefore, that τrθ = −2νTSrθ = 0 and the axial mean velocity does not
generate a non-zero Reynolds shear stress. Thus, the standard K–ε model does not
yield a non-zero mean swirl velocity by virtue of (13), (19) and, as such, is inconsistent
with physical and numerical experiments. Furthermore, since it is frame-indifferent, the
standard K–ε model does not yield the rotationally dependent axial mean velocity
shown by experiments. These deficiencies will be demonstrated by calculations later.
It is worth noting that these deficiencies are shared by all eddy viscosity models based
on the Boussinesq hypothesis.

The nonlinear K–ε model of Speziale (1987) takes the form

τij = 2
3
Kδij − 2Cµ

K2

ε
S ij − 4CDC

2
µ

K3

ε2

(
SikSkj − 1

3
SmnSmnδij

)
−4CEC

2
µ

K3

ε2
(
◦
Sij − 1

3

◦
Smm δij), (20)

where, for steady flows,

◦
Sij = ūk

∂S ij

∂xk
− ∂ūi

∂xk
Skj − ∂ūj

∂xk
Ski (21)

is the frame-indifferent Oldroyd derivative of Sij and CD and CE are constants
(Speziale 1987). In coordinate–free notation

τ = 2
3
KI − 2Cµ

K2

ε
S − 4CDC

2
µ

K3

ε2

[
S

2 − 1
3
tr (S

2
)I
]− 4CEC

2
µ

K3

ε2
[
◦
S − 1

3
tr (

◦
S)I ], (22)

where tr (·) denotes the trace. It is a simple matter to show that the axial mean velocity
yields

S
2

=

 1
4

(
dūz/dr

)2
0 0

0 0 0

0 0 1
4

(
dūz/dr

)2

 (23)

and

∇ū =

 0 0 dūz/dr
0 0 0
0 0 0

 . (24)

From (21), the axial mean velocity gives rise to

◦
S=

 0 0 0
0 0 0

0 0 −(dūz/dr)2

 . (25)
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It is thus clear from (19), (22), (23) and (25) that τrθ = 0 and the nonlinear K–ε model
does not generate a non-zero mean swirl velocity. Furthermore, since it is frame-
indifferent (Speziale 1998b), the nonlinear K–ε model does not predict a rotationally
dependent axial mean velocity, since τrz is independent of Ω, in contradiction to
experiments. Thus, the standard and nonlinear K–ε models – like all traditional two-
equation models with conventional near-wall treatments – are incapable of predicting
the main physical features of turbulent flow in an axially rotating pipe. The nonlinear
K–ε model was developed relative to material frame–indifference in the limit of two-
dimensional turbulence. Since it is an algebraic model, the model exactly satisfies
material frame–indifference in the limit of two-dimensional turbulence. That is why
the Oldroyd derivative is present. This constraint is far too severe in the context of
practical closure models and hence an alternative form such as the explicit algebraic
stress model (presented below) is a far better alternative, even though it collapses
to the nonlinear K–ε model for certain basic flows in an inertial frame (Gatski &
Speziale 1993). Frame-dependent terms are needed to describe the axially rotating
pipe. In the next section illustrative calculations will be provided that demonstrate
these points.

3.2. Explicit algebraic stress models

In this subsection we present an analysis of explicit algebraic stress models obtained
from the Reynolds stress transport equation by solving the implicit algebraic equations
that result from the algebraic stress model approximation for equilibrium turbulent
flows (Gatski & Speziale 1993). They are in the resultant form of anisotropic eddy
viscosity models with strain-dependent coefficients. The specific form of the explicit
algebraic stress models, for two-dimensional mean turbulent flows, is

τij = 2
3
Kδij − 3

3− 2η2 + 6ξ2

[
α1

K2

ε
S ij + α2

K3

ε2
(SikWkj + SjkWki)

−α3

K3

ε2

(
SikSkj − 1

3
Sk`Sk`δij

)]
, (26)

where α1, α2 and α3 are constants. More specifically,

α1 = ( 4
3
− C2)g, α2 = 1

2
( 4

3
− C2)(2− C4)g

2, α3 = ( 4
3
− C2)(2− C3)g

2,

g =

(
1
2
C1 +

P
ε
− 1

)−1

, η =
1

2

α3

α1

K

ε
(SijS ij)

1/2, ξ =
α2

α1

K

ε
(WijW ij)

1/2,

 (27)

and P/ε is usually specified to be 1 in wall-bounded turbulent flows. Here,

Wij =
1

2

(
∂ūi

∂xj
− ∂ūj

∂xi

)
+

(
C4 − 4

C4 − 2

)
emjiΩm, (28)

where eijk is the permutation tensor and C1–C4 are constants in the pressure–strain
model that will be discussed later. For the SSG model, the coefficients C1–C4 take
on the respective equilibrium values of 4.80, 0.36, 1.25 and 0.40. Explicit algebraic
stress models are formally two-equation models since they are solved with modelled
transport equations for K and ε that are of the same form as (16) and (17).

Since the strain-dependent expression in (26) is formally derived for turbulent flows
that are in equilibrium, a singularity can arise in this coefficient in non-equilibrium
turbulent flows through the vanishing of its denominator. Gatski & Speziale (1993)



Turbulent flow in an axially rotating pipe 9

proposed the simple regularization

3

3− 2η2 + ξ2
≈ 3(1 + η2)

3 + η2 + 6ξ2η2 + 6ξ2
(29)

based on a Taylor expansion (more recently, Speziale & Xu 1996 considered regular-
ized expressions via a Padé approximation that have some limited consistency with
rapid distortion theory). This expression is approximately equivalent to the original
expression for turbulent flows close to equilibrium – where it formally applies – and
is regular and computable for all values of η and ξ. With this regularization, the
explicit algebraic stress model (26) takes the coordinate–free form

τ = 2
3
KI − 3(1 + η2)

3 + η2 + 6ξ2η2 + 6ξ2

[
α1

K2

ε
S + α2

K3

ε2
(S W −W S)

−α3

K3

ε2

(
S

2 − 1
3
tr (S

2
)I
)]
. (30)

The axial mean velocity gives rise to the following values of W :

W =

 0 −αΩ − 1
2
dūz/dr

αΩ 0 0
1
2
dūz/dr 0 0

 , (31)

where α ≡ (C4 − 4)/(C4 − 2). Therefore, the axial mean velocity yields the result

S W −W S =


1
2

(
dūz/dr

)2
0 0

0 0 − 1
2
αΩdūz/dr

0 − 1
2
αΩdūz/dr − 1

2

(
dūz/dr

)2

 . (32)

An examination of (19), (23), (32) – in the light of (30) – establishes that τrθ = 0.
Hence, since the two-dimensional explicit algebraic stress model does not generate
a non-zero Reynolds shear stress τrθ there will be no mean swirl velocity. However,
unlike the standard and nonlinear K–εmodels, it does predict a rotationally dependent
axial mean velocity, which is the more significant effect. Since

τrz = − 3α1(1 + η2)

2(3 + η2 + 6ξ2η2 + 6ξ2)

K2

ε

dūz
dr
, (33)

where

η =
1

2
√

2

α3

α1

K

ε

dūz
dr
, ξ =

α2

α1

K

ε

[
1

2

(
dūz
dr

)2

+ 2α2Ω2

]1/2

,

it is clear that τrz – and, hence the axial mean velocity by virtue of (14) – will be
rotationally dependent since it depends explicitly on Ω through ξ. In the next section,
we will show illustrative calculations of this effect.

Although the explicit algebraic stress model (26) is formally derived for two-
dimensional mean turbulent flows, it is often applied to three-dimensional flows
(like the rotating axial pipe), sometimes with good results. The three-dimensional
form of the explicit algebraic stress models is much more complicated. It takes the
coordinate–free form (Pope 1975)

b∗ =

10∑
λ=1

G(λ)T (λ) (34)
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where T (λ) are the integrity bases given by

T (1) = S
∗
, T (6) = W

∗2
S
∗

+ S
∗
W
∗2 − 2

3
{S∗W ∗2}I ,

T (2) = S
∗
W
∗ −W ∗S∗, T (7) = W

∗
S
∗
W
∗2 −W ∗2S∗W ∗,

T (3) = S
∗2 − 1

3
{S∗2}I , T (8) = S

∗
W
∗
S
∗2 − S∗2W ∗S∗,

T (4) = W
∗2 − 1

3
{W ∗2}I , T (9) = W

∗2
S
∗2

+ S
∗2
W
∗2 − 2

3
{S∗2W ∗2}I ,

T (5) = W
∗
S
∗2 − S∗2W ∗, T (10) = W

∗
S
∗2
W
∗2 −W ∗2S∗2W ∗,


(35)

where {·} denotes the trace. Here,

b∗ij =

(
C3 − 2

C2 − 4
3

)
(τij − 2

3
Kδij)

2K
, (36)

S
∗
ij = 1

2
g
K

ε
(2− C3)Sij , (37)

W
∗
ij = 1

2
g
K

ε
(2− C4)Wij, (38)

and thus S
∗

and W
∗

are directly proportional to S and W so it is only necessary to
consider the latter terms. The solution for the coefficients is given by (see Gatski &
Speziale 1993)

G(1) = − 1
2
(6− 3η1 − 21η2 − 2η3 + 30η4)/D, G(6) = −9/D,

G(2) = −(3 + 3η1 − 6η2 + 2η3 + 6η4)/D, G(7) = 9/D,

G(3) = (6− 3η1 − 12η2 − 2η3 − 6η4)/D, G(8) = 9/D,

G(4) = −3(3η1 + 2η3 + 6η4)/D, G(9) = 18/D,

G(5) = −9/D, G(10) = 0,


(39)

where the denominator D is

D = 3− 7
2
η1 + η2

1 − 15
2
η2 − 8η1η2 + 3η2

2 − η3 + 2
3
η1η3

−2η2η3 + 21η4 + 24η5 + 2η1η4 − 6η2η4 (40)

and

η1 = {S∗2}, η2 = {W ∗2}, η3 = {S∗3}, η4 = {S∗W ∗2}, η5 = {S∗2W ∗2}.
The axial mean velocity gives rise to

W
2

=

 −
1
4

(
dūz/dr

)2 − α2Ω2 0 0

0 −α2Ω2 − 1
2
αΩdūz/dr

0 − 1
2
αΩdūz/dr − 1

4

(
dūz/dr

)2

 . (41)

Hence, this quadratic generator, like the other quadratic terms, does not contribute a
non-zero value to τrθ , and thus will not lead to a mean swirl velocity. However, such
an effect does come in at the cubic level. In the cubic generator in (35) the axial mean
velocity gives rise to the matrix:

W S
2 − S2

W =

 0 1
4
αΩ
(
dūz/dr

)2
0

1
4
αΩ
(
dūz/dr

)2
0 0

0 0 0

 . (42)
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The resulting non-zero value for τrθ will generate a mean swirl velocity. The same is
true of the other cubic generator, since it is

W
2
S + S W

2
=

0 −1

4
αΩ

(
dūz
dr

)2

−1

4

(
dūz
dr

)3

− 1

2
α2Ω2 dūz

dr

−1

4
αΩ

(
dūz
dr

)2

0 0

−1

4

(
dūz
dr

)3

− 1

2
α2Ω2 dūz

dr
0 0


. (43)

On the other hand, it can be shown that the quartic terms – embodied by T (7)−T (9) in
(35) – do not give rise to a non-zero shear component (the quintic term represented by
T (10) has a coefficient that is zero). Thus, it can be concluded that a mean swirl velocity
arises from a cubic nonlinearity in conventional explicit algebraic stress models. This
is consistent with the results of Wallin & Johansson (1997). In fact, Craft, Launder
& Suga (1993) developed a cubic algebraic model to better describe swirling flows.
However, their model suffers a certain basic inconsistency which argues against its
use in general flows (Speziale 1998a).

3.3. Second-order closure models

Second-order closure models are based on the Reynolds stress transport equation
which, in a rotating frame, takes the form

ūk
∂τij

∂xk
= −τik ∂ūj

∂xk
− τjk ∂ūi

∂xk
+Πij − εij − ∂Cijk

∂xk
+ ν∇2τij

−2emkiΩmτjk − 2emkjΩmτik (44)

for statistically steady flows, where again Ωm is the angular velocity of the reference
frame relative to an inertial frame and eijk is the permutation tensor. Here,

Πij ≡ p′
(
∂u

′
i

∂xj
+
∂u

′
j

∂xi

)
, (45)

εij ≡ 2ν
∂u

′
i

∂xk

∂u
′
j

∂xk
, (46)

Cijk ≡ u′iu′ju′k + p
′
u
′
iδjk + p

′
u
′
jδik, (47)

are, respectively, the pressure–strain correlation, dissipation rate tensor and turbulent
diffusion correlation.

In order to achieve closure of the Reynolds stress transport equation (44), models
are needed for:

(a) the pressure–strain correlation, Πij;
(b) the dissipation rate tensor, εij;
(c) the turbulent diffusion correlation, Cijk .
Usually, the Kolmogorov assumption of local isotropy is invoked whereby at high

Reynolds numbers it is assumed that (Hinze 1975)

εij = 2
3
εδij , (48)

where the turbulent (scalar) dissipation rate ε is obtained from a modelled transport
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equation of the same general form as (17). The pressure–strain correlation Πij is
modelled in an algebraic form based on a simplified analysis of the Poisson equation
for the pressure (Reynolds 1987). In the Launder et al. (1975) model the following
linear form is chosen:

Πij = −C1εbij + C2KSij + C3K
(
bikSjk + bjkS ik − 2

3
bmnSmnδij

)
+C4K(bikW jk + bjkW ik) (49)

where

bij =
τij − 2

3
Kδij

2K
,

C1 = 3.0, C2 = 0.8, C3 = 1.75, C4 = 1.31

 (50)

and, here,

Wij =
1

2

(
∂ūi

∂xj
− ∂ūj

∂xi

)
+ emjiΩm (51)

is the absolute mean vorticity tensor which, in this flow, has the following non-zero
components:

Wθr =
r

2

∂

∂r

(
ūθ

r

)
+ αΩ = −Wrθ, Wzr =

1

2

∂uz

∂r
= −Wrz.

Launder et al. in fact proposed two different variants for the linear model: a quasi-
isotropic (QI) representation and a much simpler isotropization-of-production (IP)
form in which only the leading term of the QI version was retained. Hirai et al. (1988)
used the QI model to predict the fully developed flow in an axially rotating pipe
with apparent success. However, those authors did not include in their computations
the wall-damping terms that are required for the Launder et al. models to return
approximately correct relative stress levels in the local equilibrium region near a solid
wall. The need for such terms to correct the Launder et al. models in wall-bounded
flows is well documented in the literature. In a recent study Malin & Younis (1997)
found that the QI model, when properly used in conjunction with wall-damping terms,
yields predictions for the axially-rotating pipe flow that are seriously at variance with
measurements. In this study, we shall confine consideration to the IP model, which
we will use here with the wall-damping terms proposed by Gibson & Launder (1978).

An alternative formulation to the linear one of Launder et al. is that of Speziale,
Sarkar & Gatski (1991) (SSG) which is based on the quadratic form

Πij = −(C1ε+ C∗1P)bij + C∗2 ε
(
bikbkj − 1

3
bk`bk`δij

)
+ (C2 − C∗3II1/2

b )KSij

+C3K
(
bikSjk + bjkS ik − 2

3
bk`Sk`δij

)
+ C4K(bikW jk + bjkW ik), (52)

where

C1 = 3.4, C∗1 = 1.80, C∗2 = 4.2, C2 = 0.8,

C∗3 = 1.30, C3 = 1.25, C4 = 0.40, IIb = bijbij .

}
(53)

Notice that in the SSG model the rapid part of the pressure–strain correlation is tenso-
rially linear. By definition, the rapid pressure–strain correlation is linear in the energy
spectrum tensor and, hence, linear in the Reynolds stress tensor (Reynolds 1987).
One of the advantages of the SSG model is that it can be applied to wall-bounded
geometries without wall reflection terms (Abid & Speziale 1993). The coefficients
C1 and C2 in the explicit algebraic stress model (26) are the equilibrium values of
C1 +C∗1P/ε and C2−C∗3II1/2

b ; C3 and C4 are the same as those given in (53). In the last
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decade, cubic models in bij have been proposed (see e.g. Fu, Launder & Tselepidakis
1987 and Ristorcelli, Lumley & Abid 1995). However, in most instances they do not
perform any better. This will be discussed in more detail in the next section.

The Daly & Harlow (1970) model is used for the turbulent diffusion terms since it
is the simplest such model. This diffusion model takes the form

Cijk = −CsK
ε
τkm

∂τij

∂xm
, (54)

where the coefficient Cs ≈ 0.22. Henceforth, we use the notation

Dij = −∂Cijk
∂xk

. (55)

Since ū = ūθ(r)eθ + ūz(r)ez it follows that ū · ∇ = 0. Furthermore, at high Reynolds
numbers, the molecular diffusion terms can be neglected in the Reynolds stress
transport equation (44) and the Kolmogorov assumption of local isotropy can be
implemented as given in (48). This yields, from (44), the following transport equation
for the Reynolds shear stress τrθ , that the axial mean velocity ūz(r) gives rise to:

Πrθ +Drθ − 2Ω(τrr − τθθ) = 0. (56)

The last term in this equation comes from Coriolis effects, and viscous effects have
been neglected for simplicity which can be done at high Reynolds numbers. The
leading-order term for Πrθ is the return-to-isotropy term – the first term in (49) and
(52) – which takes the form

Πrθ = −C1ε
τrθ

2K
(57)

and is present in all second-order closure models. Hence,

C1ε

2K
τrθ = Π

(R)
rθ +Drθ − 2Ω(τrr − τθθ), (58)

where Π (R)
ij is predominantly the rapid part of the pressure–strain correlation which

also contains the nonlinear part of the slow pressure–strain correlation (Reynolds
1987). Now, τrr and τθθ are two of the principal components of the turbulent kinetic
energy

K = 1
2
(τrr + τθθ + τzz), (59)

which is non-zero in any pipe flow. Therefore, τrr and τθθ are non-zero. Furthermore,
they are not equal since pipe flow is known to be anisotropic (all of the components
of the turbulent kinetic energy in (59) are unequal except near the centreline of the
pipe (Hinze 1975)). So from (58) a non–zero value of τrθ will be predicted yielding
a mean swirl velocity ūθ that is rotationally dependent. Thus, a non-zero mean swirl
velocity will be predicted in axially rotating pipe flow by virtually all existing second-
order closures by the presence of Coriolis terms. The simplified Launder et al. model
(the IP model) yields τrr = τθθ outside the near-wall region of the pipe so that the
mean swirl velocity arises exclusively from wall reflection terms. Since from (44) it
follows that

C1ε

2K
τrz = Π (R)

rz +Drz + 2Ωτθz, (60)

it is clear that τrz will depend on Ω since τθz is non-zero, as we will see later. Therefore,
all second-order closure models predict the rotationally dependent axial mean velocity
which is observed experimentally. While virtually all second-order closures can predict
the two main physical features of turbulent flow in an axially rotating pipe, the quality
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of the predictions can vary – particularly depending on what pressure–strain model
is chosen. In the next section, we show that quadratic pressure–strain models perform
the best overall in comparison with experimental data.

4. Illustrative calculations
Calculations will be presented relative to both the rotating frame of the pipe and

the inertial frame since the latter was used in previous studies (the former, however,
greatly simplifies the analysis). Since high Reynolds number flows will be considered,
the solutions will be matched to the law of the wall in order to avoid the ambiguities
of near-wall modelling. Support for the use in this flow of the conventional log law
(suitably extended by reference to the resultant relative velocity and wall shear stress
vectors) is provided by the measurements of Kitoh (1991) obtained in a swirling flow
in a straight pipe at high Reynolds number. Here, we deduce the resultant wall shear
stress from the extended log law and obtain its axial and tangential components –
to provide boundary conditions for the velocity components in the same directions –
by direct resolution (Gibson & Younis 1986). The mean swirl velocity in the inertial
frame is given by

Uθ = ūθ + Ωr, (61)

where ūθ is the mean swirl velocity relative to the rotating frame. Thus, when there is
the absence of a mean swirl velocity relative to the rotating frame, its profile is linear
relative to the inertial frame. The axial mean velocity is the same in both reference
frames (i.e. Uz = ūz) since ūz = ūz(r) and Ω = Ωez .

In figure 2, the predictions of various models for the axial mean velocity and
Reynolds shear stress in a stationary circular pipe at a high Reynolds number are
shown as a benchmark and compared with the measurements of Imao et al. (1996)
for a Reynolds number (based on bulk axial mean velocity and pipe radius) of 10 000.
(The variable-coefficient SSG model is a non-equilibrium version of this model that
has recently been developed; it was ultimately abandoned since it does not appear to
make much of a difference in pipe flow). It is clear that all of the models predict the
characteristic (flat) turbulent mean velocity profile reasonably well which becomes
more pronounced at higher Reynolds numbers. In figure 3, the predictions of several
two-equation models for the axial mean velocity in an axially rotating pipe are
displayed for a non-dimensional rotation rate of N = 0.5 and compared with the
experimental data of Imao et al. (1996) as well as with the predictions of several
second-order closures. Here,

N =
ΩR

U0

, (62)

where U0 is the bulk axial mean velocity. It is clear from these calculations that,
consistent with the results derived in this paper, the K–ε model does not respond to
the rotation, incorrectly yielding a mean velocity that is independent of the rotation
rate of the pipe (the nonlinear K–ε model yields similar results which are not shown
for simplicity). On the other hand, the two-dimensional explicit algebraic stress model
based on the SSG model (Gatski & Speziale 1993) responds to the rotation and
predicts a reasonably good axial mean velocity in agreement with experiments as
shown in figure 3. However, all of these two-equation models predict that the mean
swirl velocity ūθ is zero relative to the rotating pipe.

Although the two-dimensional explicit algebraic stress model does not predict the
presence of a mean swirl velocity relative to the rotating pipe, it is not that serious from
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Figure 2. Turbulent flow in a stationary circular pipe: comparison of the predictions of various
models with experimental data (EASM denotes the explicit algebraic stress model). (a) Axial mean
velocity and (b) Reynolds shear stress. Data of Imao et al. (1996).
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Figure 3. Predictions of various two-equation models and second-order closures (LRR is the
Launder et al. 1975 model) for the axial mean velocity in axially rotating pipe flow. Comparisons
are made with the experimental data of Imao et al. (1996).
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Figure 4. Experimental data of Imao et al. (1996) for the mean swirl velocity in an axially rotating
pipe. (a) The mean swirl velocity relative to the rotating pipe normalized by the bulk axial mean
velocity and (b) the mean swirl velocity relative to the inertial frame normalized by the angular
velocity of the pipe in the traditional way.

an engineering standpoint. This mean swirl velocity only constitutes approximately
a 15% effect, relative to the axial mean velocity, as shown in figure 4(a), when the
measurements are taken relative to the rotating pipe and normalized by the bulk axial
mean velocity. It appears to be deceptively large when measurements are taken relative
to the inertial frame – and normalized in the traditional way with respect to ΩR –
because of the angular velocity of the pipe (see figure 4b). Since the two-dimensional
explicit algebraic stress model does a good job in predicting the crucial axial mean
velocity (there is only approximately a 7–8% error), it is adequate from an engineering
standpoint yielding results that are overall only in error of the order of 10%.

In figure 5, it is shown that with a three-dimensional explicit algebraic stress
model it is possible to predict the presence of a mean swirl velocity along with a
rotationally dependent axial mean velocity. For this purpose, calculations are taken
from Wallin & Johansson (1997) where comparisons were made with the experimental
data of Imao et al. (1996). However, the three-dimensional model used by Wallin &
Johansson (1997) only has one of the two cubic generators discussed earlier in § 3.3.
This is probably why the specific quantitative agreement is not particularly close (it is,
however, fairly good from a qualitative standpoint). We will not present calculations
for the full three-dimensional explicit algebraic stress model (Gatski & Speziale 1993)
because it is extremely complicated and is in need of regularization which is not
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Figure 5. Predictions of the cubic algebraic models of Wallin & Johansson (1997) for the mean
velocity in an axially rotating pipe compared with the experimental data (•) of Imao et al. (1996).
(a) Axial mean velocity and (b) mean swirl velocity relative to the inertial frame. Taken from Wallin
& Johansson (1997).

as straightforward as in the two-dimensional case. As mentioned earlier, Craft et al.
(1993) developed a cubic algebraic model in order to better describe swirling flows.

The results obtained for the axial mean velocity and mean swirl velocity – relative
to the rotating pipe – obtained from second-order closures are displayed in figure 6
side by side for the axially rotating pipe (N = 0.5). The mean swirl velocity given
in the conventional way relative to the inertial frame is shown in figure 7. Again
comparisons are made with the experimental data of Imao et al. (1996). In figures 8
and 9, the associated Reynolds stresses are provided in detail. Both the Launder et al.
(1975) model and the SSG model of Speziale et al. (1991) are displayed along with the
results of the standard K–ε model. It is clear from the results for the mean velocity
that the Launder et al. model is able to predict both mean effects reasonably well in
an axially rotating pipe while the SSG model yields results that are even better. This
is generally consistent with our earlier analysis in § 3.3. It should be remembered that
second-order closures are equivalent to an algebraic model with a quartic nonlinearity
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Figure 6. Predictions of various second-order closure models for the axial mean velocity and mean
swirl velocity relative to the rotating pipe in axially rotating pipe flow. Comparisons are made with
the experimental data of Imao et al. (1996). (a) Axial mean velocity and (b) mean swirl velocity
relative to the rotating frame.
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Figure 7. Mean swirl velocity relative to the inertial frame predicted by various closure models
compared to the experimental data of Imao et al. (1996) (◦). ——, SSG model; - - -, Launder et al.
model and – – –, Standard K–ε model.
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Figure 8. Normal Reynolds stresses in the axially rotating pipe. Comparison of the predictions of
various second-order closure models and the K–ε model with the experimental data of Imao et al.
(1996). (a) τzz , (b) τrr , and (c) τθθ .

when the algebraic stress model approximation is made in three dimensions (Gatski
& Speziale 1993). This explains why both three-dimensional explicit algebraic stress
models and second-order closure models do well. The experimental data for the
Reynolds stresses – except for the crucial Reynolds shear stress τrz that drives the
flow – is probably not that accurate.

These calculations were repeated for the more rapid rotation case of N = 0.71.
Both the Launder et al. model and the SSG model were considered and comparisons
were made with the large-eddy simulations of Eggels et al. (1994) (comparisons were
not made with the direct simulations because of the large disparity in the Reynolds
numbers: the Reynolds number of the large-eddy simulations was 59 500). In large-
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Figure 9. Reynolds shear stresses in the axially rotating pipe. Comparison of the predictions of
various second-order closure models and the K–ε model with the experimental data of Imao et al.
(1996). (a) τrz , (b) τrθ , and (c) τθz .

eddy simulations, the full Navier–Stokes equations (1)–(3) are solved numerically with
a subgrid-scale stress model. In figure 10a, b the axial mean velocity and mean swirl
velocity relative to the inertial frame are displayed. The Reynolds stresses are not
compared in detail due to the problem of defiltering that leads to uncertainties. It
appears, however, from the mean velocities that there is no question that second-order
closure models provide a good description of this flow (the results of the SSG model
are excellent). Furthermore, it is clear from these results that quadratic pressure–strain
models – as embodied by the SSG model – perform the best overall consistent with
the recent calculations of Pettersson et al. (1998).

It should be noted that the profile for τrθ is such that the values for the Reynolds
shear stress are zero except close to the wall. From (13) it is clear that in the inviscid
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Figure 10. Comparison of the predictions of various second-order closure models and the K–ε
model for the mean velocity in the axially rotating pipe with the large-eddy simulations of Eggels
et al. (1994). (a) Axial mean velocity and (b) the mean swirl velocity relative to the inertial frame.

limit – which is a valid approximation for the case of high Reynolds number flows
except for those close to a wall – we have

dτrθ
dr

+
2

r
τrθ = 0, (63)

which has the solution

τrθ =
constant

r2
. (64)

Regularity of the solution at the centre of the pipe requires that the constant be zero
and, thus,

τrθ = 0, (65)

so that τrθ can only be non-zero in the near-wall region (Yakhot, Private Communica-
tion). This is a somewhat surprising result that will be demonstrated by calculations.
Since τrθ is the generator for a mean swirl velocity, we can conclude that a non-zero
mean swirl velocity arises largely from near-wall effects in a high-Reynolds-number ax-
ially rotating pipe flow. This is illustrated in figure 11 where the Reynolds number
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Figure 11. Predictions of the SSG model for the Reynolds shear stress τrθ in the axially rotating pipe.
The Reynolds number is successively raised starting from the value of the large-eddy simulations
(LES) of Eggels et al. (1994).

was successively raised starting from the value of the large-eddy simulations. Clearly,
from these results, τrθ goes to zero as Re → ∞ consistent with these theoretical re-
sults. Furthermore, these results demonstrate the difficulty of large-eddy simulations
in accurately determinating the Reynolds stresses (notice in figure 11 the waves in the
profile of the Reynolds shear stress obtained from the large-eddy simulations).

Note that formally the solution of the modified Helmholtz equation (13) for the
mean swirl velocity can be written as

ūθ =

∫
R

G(x, x′)
1

νr′2
d

dr′
(r′2τ′rθ) d3x′ (66)

plus surface terms (where R is the region of the pipe and G(x, x′) is the Green’s
function). Here, the Green’s function (Morse & Feshbach 1953) is such that

G(x, x′) ∼ 1

|x− x′| , (67)

so that even though τrθ is confined to the near-wall region ūθ will be non-zero
throughout the pipe consistent with experimental observations (see the experimental
data illustrated in figure 4). Thus, in principle, a non-zero mean swirl velocity can
be predicted by the K–ε model if a more sophisticated near-wall treatment is im-
plemented, namely one that predicts a non-zero τrθ in the near-wall region. While it
may not be desirable to do this, it is, in principle, possible. Of course, any standard
near-wall treatment in conventional two-equation models will yield τrθ – and, hence,
ūθ – equal to zero as discussed earlier.

According to the Taylor–Proudman theorem, a flow will two-dimensionalize when
subjected to a rapid rotation (Tritton 1977). This will also tend to cause the flow to
laminarize, which explains why the axial velocity profiles become more laminar-like
when there is a discernible rotation. This effect can be observed in figure 3 and
figure 10. The development of a turbulence model that is fully consistent with the
Taylor–Proudman theorem is a very challenging undertaking that has not yet been
fully achieved (Speziale 1998b). It also requires a modification in the dissipation rate
equation to account for rotational effects (Speziale & Gatski 1997). Rotations disturb
the energy cascade causing the dissipation to be reduced.
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Finally, some comments are warranted concerning the possible development of a
symmetry-breaking bifurcation (i.e. a bifurcation where there can be an azimuthal
dependence) in the axially rotating pipe. A non-zero mean swirl velocity could develop
in simple turbulence models through the breakdown of azimuthal symmetry in the
Reynolds-averaged equations – i.e. through a symmetry-breaking bifurcation. This
would cause there to be a non-zero ∂P/∂θ that could then generate a non-zero mean
swirl velocity in (7). The possible development of a symmetry-breaking bifurcation
was tested for computationally. No such bifurcation was found. Whenever a non-zero
mean swirl velocity was added, without assumed azimuthal symmetry, it decayed to
zero. This was done in the standard two-equation models (i.e. the K–ε model) as well
as in the two-dimensional explicit algebraic stress model. Thus, it does not appear
that a mean swirl velocity can be generated in these models by such a bifurcation.

5. Conclusion
Both the analysis and modelling of turbulent flow in an axially rotating pipe have

been considered in depth. Four major conclusions have been arrived at:
(i) The two major effects in this flow – a rotationally dependent axial mean velocity

and the presence of mean swirl velocity relative to the rotating pipe – cannot be
predicted by traditional two-equation models such as the standard K–ε model with
conventional near-wall treatments.

(ii) Two-dimensional explicit algebraic stress models are able to predict the first
effect – namely a rotationally dependent axial mean velocity – quite well from a
quantitative standpoint. However, they are unable to predict the presence of a non-
zero mean swirl velocity – approximately a 15% effect – when conventional near-wall
treatments, such as those used in the K–ε model, are implemented. This effect,
however, can be predicted by three-dimensional explicit algebraic stress models where
it arises from a frame-dependent cubic nonlinearity. There is a problem, however, in
that these models erroneously predict that τrθ is non-zero in the inviscid limit, which
is the same as the high Reynolds number limit, whereas τrθ = 0 according to (13)
when ν goes to zero (this means that the model will yield incorrect predictions at
high Reynolds numbers when there are no walls).

(iii) Second-order closure models provide a good description of this flow, in that
the two principal effects discussed above can be described by virtually any second-
order closure, since they arise from Coriolis effects which are automatically present in
these models. Quadratic pressure–strain models – as embodied by the SSG model –
performed the best overall when detailed comparisons were made with experiments.
The Launder et al. model – with its linear pressure–strain – yields a reasonably good
description of this flow, but does not perform quite as well.

(iv) The presence of a mean swirl velocity is generated by a non-zero Reynolds
shear stress τrθ which, at high Reynolds numbers, is confined to the near-wall region.
Thus, even though its effects are felt throughout the pipe, the generation of a non-zero
mean swirl velocity is largely a near-wall effect at high Reynolds numbers. Hence, it is
possible to predict this effect at high Reynolds numbers with traditional two-equation
models if a more sophisticated near-wall treatment that predicts a non-zero τrθ , consis-
tent with experimental observations, is implemented. However, it may be undesirable
to do so, particularly to be able to properly describe low Reynolds number turbulence.

There is no question that three-dimensional frame-dependent models are needed
to adequately describe turbulent flow in an axially rotating pipe. These can be
either three-dimensional algebraic models with a cubic nonlinearity or full second-
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order closures, although there are some problems with the former. Most existing
second-order closure models have pressure–strain that have been developed for two-
dimensional mean turbulent flows that are close to equilibrium. This is decidedly
the case in the SSG model and is implicit in the Launder et al. model. However,
since second-order closures contain production and Coriolis terms – which are exact
terms that account for three-dimensional effects – they can be applied to this three-
dimensional problem. Furthermore, it should be noted that if a more sophisticated
near-wall modelling approach is used to predict this flow with simpler two-equation
models it must account for three-dimensional frame-dependent effects. This transcends
the issue of non-alignment of stress and strain which requires the use of anisotropic
eddy viscosity models, at the minimum, to obtain a good description of this flow.
Three-dimensionality as well as anisotropy is needed. This is lacking in most simple
turbulence models. The problem of turbulent flow in an axially rotating pipe is one
of the simplest three-dimensional turbulent flows that can be constructed and yet, as
shown in this paper, is one that poses a severe test for current turbulence closures.
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Our appreciation goes to Dr V. Y. Yakhot (Boston University) for several helpful
comments and to Professor S. Imao (Gifu University) for providing us with tabulated
experimental data.

Appendix
We briefly discuss here the laminar non-Newtonian version of this problem. For

laminar non-Newtonian flow, the equations of motion for the axially rotating pipe –
under fully developed conditions with azimuthal symmetry – take the form

−u
2
θ

r
= −∂P

∂r
− dtNrr

dr
− 1

r
(tNrr − tNθθ) + 2Ωuθ, (A 1)

ν
(
∇2uθ − uθ

r2

)
− dtNrθ

dr
− 2

r
tNrθ = 0, (A 2)

−∂P
∂z

+ ν∇2uz − dtNrz
dr
− 1

r
tNrz = 0, (A 3)

where tNrr, t
N
θθ, t

N
rθ and tNrz are components of the kinematic form of the non-Newtonian

viscous stress tensor tNij . Here, the total stress tij is given by

tij = −pδij + µ

(
∂ui

∂xj
+
∂uj

∂xi

)
− ρtNij , (A 4)

where µ is the dynamic viscosity and p is the dynamic pressure (ν ≡ µ/ρ and P ≡ p/ρ
given that ρ is the mass density which is constant). Equations (A 1)–(A 3) are identical
in form to (12)–(14). That is why analogies are often made between the laminar flow
of a non-Newtonian fluid and the mean turbulent flow of a Newtonian fluid (and,
hence, between the velocity u and the mean velocity u as well as between the non-
Newtonian viscous stress tensor tNij and the Reynolds stress tensor τij; see Rivlin 1957;
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Hinze 1975). The slow steady flow of dilute non-Newtonian fluids can be described
by the Rivlin–Ericksen fluid model for which

tNij = α(M+1)A
(M+1)
ij + α(M)A

(M)
ij + · · ·+ α(2)A

(2)
ij , (A 5)

where α(M) are coefficients and A(M)
ij is the Mth Rivlin–Ericksen tensor that is obtained

from a recursion relation which, for steady flows, is given by (Eringen 1967)

A
(M+1)
ij = u · ∇A(M)

ij + A
(M)
ik

∂uk

∂xj
+ A

(M)
jk

∂uk

∂xi
, (A 6)

with
A

(1)
ij = 2Sij (A 7)

given that

Sij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
(A 8)

is the rate-of-strain tensor. They are obtained for general simple fluids by an expansion
(Truesdell & Noll 1965). The Rivlin–Ericksen fluids are known to have unidirectional
flow solutions in a stationary straight pipe where u = uz(r)ez so that tNrθ is zero
(Truesdell & Noll 1965; Schowalter 1978). They are frame-indifferent, so solutions
for tNij are independent of Ω (Truesdell & Noll 1965). Thus, no swirl velocity will be
present in an axially rotating pipe and the axial mean velocity will be rotationally
independent.
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